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This paper discusses a method of solution for the spinor Helmholtz equation in optics as 
it was previously made [Hillion, J. Computational Physics 28 (1978)] for the scalar Hehnhohz 
equation. A new approximation is given with the noteworthy property that the spinor 
field is reduced to a set of two scalar fields satisfying similar difference equations. And, as 
in the previous case, the corresponding explicit methods are stable provided that a rather 
unrestrictive condition is satisfied. An example of computation is given. 

I. INTRODUCTION 

As previously shown [l], a polarized laser beam propagating along the Oz axis is 
characterized by a complex spinor Y(r) (r = (x, y, z) G!= (p, z)) which is a solution of 
the spinor Helmholtz equation 

(~+a, + X,(1 + q(r)) Y(r) = 0, i = (-1)‘/2, (1) 

where the uj, j = 1, 2, 3, are the Pauli matrices 

satisfying the following relations 

Dl& = ieZjk@ 2 ($*j + ojaz = 2azj , (2’) 

where Szj and ezjL are, respectively, the Kronecker tensor and the permutation tensor. 
In Eq. (1) the aj , j = 1, 2, 3, are the derivatives with respect to x, y, z; K,, is the wave 
number, n(r) = 1 + y(r) denotes the index of refraction, the quantity E measuring 
the deviation of the index from unity. We use the summation convention ~9’3, = 
ala, t a2a2 I- da, . 

We previously discussed [2] the properties of Eq. (1) and we showed that Eq. (1) 
has one and only one solution for such boundary conditions as 

P@Lo = Y”o(d (la>; % P> = WI P l-3 aspe+co;u>2,Vz>O. (lb) 
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We intend here to give a numerical method for solving Eq. (1) in optics where K, is 
about lo5 cm-l which leads to some difficulties already discussed in a previous paper 
[3] and, in the present work, we closely follow the method given in [3] beginning with 
the case of a field propagating in free space where E = 0 so that Eq. (1) reduces to 

(oji3, + iK,,) Y(r) = 0 (3) 

2. PARAXIAL APPROXIMATIONS TO THE SOLUTIONS OF EQ.(~) 

2.1. Formal Infro~ffct~o~ 

In this section, we introduce paraxial approximations in a formal and rather intui- 
tive way while in Appendix 1, we give rigorous justifications and higher-order approxi- 
mations. 

First, we write (3) in the form 

??,!P(r) = --i(L + 03K0) U(r); L = CT& - 0~8~ , 3, = -&- , a, = $ , a3 = E . 

(3’) 
The solutions of (3) are 

U(r) = const exp { --i(L + IJ&J z> Y&I) 

and they satisfy the recurrence relation (Yn = ‘y@, nh)), 

Yn+l = exp {--i(L + u&) h} Yn. (4) 

Now, we have (see Appendix I), (L + u&J2 = d, + Ko2 so that 

cos{(L + (s3K0) h} = cos((Ko2 + d,)1/2 h), d,=$+& 
(4’) 

sin{(L + u3K,,) hj = (L $- u,K,J(K,~ + AJ-lj2 sin((K,,2 + Al)l/2 h). 

These relations are easy to prove by comparison of power series expansions in both 
sides. 

The paraxial approximation valid for slow-transverse variations on the wavelength 
scale and slow variation of K,, is defined as the first-order approximation in A, to the 
relations (4) 

h cos((Ko2 + AJ112 h) N cos K,,h - 2K, - sm K,,h A,) 

(L + u2Ko)(Ko2 + AL)-‘j2 sin((K,2 + A,)lj2 h) 

N (L + u3KO) sin K h sin K,h 
___ 

KO ( 
0 

h ( 

2Ko ( 
cos K,h - 

! 1 
A 

K,h 1 ’ 
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Upon inserting these expressions into (4), one has 

!P+l = cos K,h - iF(L + o,&)~ !Pn 
I 

h sin K,,h -- 
2&i 

sin K,,h + s (cos K,,h - oh 
0 0 

but one can still make further approximations: 

(i) from the paraxial conditions 

one has (L + C&J Y” = a,KoYyn. 
(ii) since the stepsize h is in the range 10-100 m, one has, K,h > 1 and 

sin K,h 
cos K,h - ___- 

Koh 
N cos K,h. 

Using these approximations in Eq. (5), 

(5’) 

and with d, replaced by the 5 point Poisson operator 

with b = h/K,,h02, where hp is the stepsize in both directions ox and oy and with 
Y; = Y(jhp, Ihp, ah). 

From the definition (2) of the matrix ff3 , it appears that Eq. (6) is a set of two 
uncoupled scalar equations; this is an important result. In this paper, we focus on 
Eq. (6) and on its properties. 

2.2. Properties of Eq. (6) 

In this section, we discuss the local truncation error and the stability of Eq. (6) and 
we prove that there exists a constant of motion. 

The local truncation error is easy to obtain since from Appendix 1 Eq. (6) is a power 
series in b truncated after the second term and since, as is well known, the 5-point 
Poisson operator in an approximation of the Laplacian to the order O(h,2). 

To test the stability of (6), one writes (5’) 

Ym+l = ( h . 
cos K,h - ~ en K,h A, Yn - io, sin K,h + & cos K& AL) y/n 1 ( 0 
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so that !P+l = yl;E+l + Y?‘;+’ with 

yy1 = 
( cos K,h - & sin K,,h A,) Yn 

0 

yln+l = 2 -ig 3 ( 
h 

sin Koh + 2Ko - cos K,h A, 
1 

Yn. (7) 

Using now the von Neumann harmonic analysis with solutions !l$ = eij’eiLQP”, one 
obtains easily the amplification factors G, , G2, of Eqs. (7) since one has A,YE = 
-(4/h,2)(sin2 (t/2) + sin2 (h/2)) P, 

G1 == cos K,h + 2b sin K,h ( sin2 5 + sin’ I); 

G2 = --ia, sin K,h - 2b cos K,h sin2 5 + sin2 1)] 
[ ( 

and as 0 < X = sin2 (f/2) + sin2 (v/2) < 2 the stability conditions for Eqs. (7) and 
thus for Eq. (6) are 

sup ) cos K,h + 2bh sin K,h ) < 1; sup / sin K,h - 2hb cos K,h / < 1. (8) 
oa42 OSASZ 

If sin K,h cos K,h > 0, these conditions reduce to 

IcosKoh+4bsinKohI <I. (8’) 

As shown in Appendix 1, Eq. (5’) corresponds to the first two terms of a power series 
in b which converges if b < I. The conditions (8) with b < 1 are not very restrictive. 

Now, we prove that there exists for Eq. (6) a constant of motion valid to the order 
O(b2); a more general result is given in Appendix 2. Since u3 is an Hermitian matrix, the 
adjoint (Hermitian conjugate) equation of (5’) is 

i 

h 
ytnfl = ytn 1 + ig, - 

2Ko a1 1 e 
iQK,h 

(5”) 

so that, one has from (5’) and (5”) 

ytn+1yn+1 == ytnyn + & (Am,Ytn . yn - y-i?, . A .yn) + O(b2) 
0 

and 

ih 
+ 2Ko -4 

(A.Yt* - PL - Ytn . AIYn) dx dy t W2) ;&onst 
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but the second integral on the right-hand side is zero. Just apply Green’s theorem 
taking into account (lb), so one has 

.r Y+n+lYn+l dx dy = /,=,,,,, Y+‘?P dx dy + O(b2) (9) *&onst 
but (Y+(r) Y(r)),=const. is the transverse energy density so that Eq. (9) implies the 
conservation of the transverse energy. This relation is also interesting from a numerical 
point of view since it makes it possible to test the stability and the importance of 
round-off errors. 

2.3. Numerical Tests 

We used the difference equation (6) for investigating the propagation of a Gaussian 
laser beam of wavelength 10.6pm with the following data 

K,, = 5.927533310 x lo5 cm-l; a = 10cm. 

We noticed previously that (6) is a set of two uncoupled scalar equations and besides, 
with the real boundary data Y”(x, y), the solutions of these equations are complex 
conjugate; so, one has just to compute the first component #E of Yj; , since for the 
second one p),: one has q3; = 4,: . 

The computations of #$ were made up to 5 km with a traverse stepsize hp = 3 cm, 
so one has with h = 50 m 

cos K,h = 0.67498; sin K,h = 0.73783; 

cos Koh + 4b sin K,h = 0.95152. 

b = 0.0937; 

Tables I, II, III, in Appendix 3 contain the results, respectively, for 0, 1,2, and 5 km 
and since the problem has a cylindrical symmetry around the 0 axis, one has just to 
give the values of Re #(r) and Im #( r on a square grid, in one quadrant of the ) 
transverse plane the dimension of the useful square being 15 x 15 cm. The values of 
the energy density $(r) $I( r are also shown and one can see that the integral (9) is ) 
constant with a good precision, the exact value being 10-2. 

We checked the condition (8’) by changing hp = 3 cm into hp = 1.5 cm so that 
1 cos K,h + 4b sin K,h I = I .781 and actually a strong instability appeared about 
1.2 km. 

Since both components of Y(r) are uncoupled and since they both satisfy the 
scalar Helmholtz equation [2], it is interesting to compare Tables I, II, and III of this 
paper with Tables I, II, and III of [3]. Of course the values of Re $ and Im $ differ but 
one can see that the results for the energy density 4(r) +(r) are in good agreement. 

Remark. The boundary condition used in this computation corresponds to a 
completely polarized beam with a linear (first and third quadrants) polarization [4] 
because the Stokes parameters are Y+(r) u&Y(r), p = 0, 1,2, 3, CT,, = (u. , gjl. 
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3. PARAXIAL APPROXIMATION TO THE SOLUTIONS OF EQ. (1) 

One now considers the solution of Eq. (1) where instead of K,, , one has K = K,, 
(1 + ep(r)) and, as in [3], we have to make supplementary assumptions on p(r) to 
find a convenient method of solution. The following assumptions seem rather un- 
restrictive in optics 

I Kop2(r)I B SUP {I ax$(r)l , I ~~$(r)l~ (4; I K,2pz(r>i > 1 dd(r)I (b) l = 1, L-. 
(10) 

One proves easily that (10a) implies that (L + CLJC)~ ru d, + K2 neglecting &u(r) and 
it was shown in [3], that (lob) implies: 

(A, + K2)P N t (p) Kp)&j 
j=o 

As a consequence, the approximations to the solution of Eq. (1) are deduced from 
the approximations to the solution of Eq. (2) (see Appendix 1) only changing K,, into 
& (1 + v(r)). 

In particular for the paraxial approximation (notice that for this approximation, 
the inequality (lob) is unnecessary) Eq. (6) becomes 

Remark. As Eq. (6), Eq. (11) is a set of two uncoupled scalar equations except 
when p(r) results from a nonlinear interaction, for instance, with p(r) = f(Y+(r) Y(r)) 
then one has to solve simultaneously both Eqs. (11). Moreover, since stability for 
nonlinear interactions is not warranted, one must check at each step, the value of the 
transverse energy. 

4. DISCUSSION 

We intended here to give a numerical method to describe in optics the propagation 
of a polarized beam in the frame of a spinor formalism whose mathematical properties 
were discussed in [2] while some physical implications were given in [5]. 

In linear optics, one can use the interesting property of the approximation (6) to 
reduce the two scalar equations, explicitly 
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where (Y9$ , (Y$, are both components of !Y9; . These equations are very similar to 
that obtained in the case of the scalar Helmholtz equation [3] 

From a numerical point of view, the comparison between expressions (12) and (13) 
is interesting; indeed, if the boundary data are chosen such that for one component, 
for instance, (Y;), , one has \(YfL), I2 = I $301 I2 then it solving (13) or (12a) is 
immaterial, as long as one is only interested in [(YG), I2 since /(Y& I2 = j I& 12. This 
can be seen on the results in Appendix 3 of this paper and on those in Appendix 3 
of [3]. 

But, from a physical point of view, one has to solve successiuely both equations (12) 
to compute the power density of the beam i(Y; )r I2 + I(Y$, I2 and polarization and 
the Poynting quadrivector Y+(r) a,Y(r), u, = {CQ , ui}, i = 1,2, 3, where u,, is the 
2 x 2 identity matrix, (the cri’s are the Pauli matrices and Y+(r) is the Hermitian 
conjugate field). 

Besides, if we note 

(Ql = e”KoKO”h(Yz)l , <CD;>, = e-“@“(Y;), ) 

one deduces from (12), the following equations 

which are finite-difference approximations of the Schriidinger equations 

f2iK0 y + OL@) = 0 

regularly used in the frame of the paraxial approximation so that one could also 
solve (15) by the well-known methods. But, in our opinion, the approximations (12) 
and (13) are of much most interest since they correspond to an explicit but nevertheless 
stable algorithm allowing large stepsizes h because the important parameter is b = 
h/KOh02 so that the condition b < 1 is easy to fulfill with the large values of K, in 
optics. Besides, the approximation (13) leads to some interesting physical implications 
discussed elsewhere [6]. 

In nonlinear optics, for instance, when the refractive index depends on the power 
density of the beam n(Y+Y), one has to solve simultaneously for polarized beams 
both Eqs. (11) (which are the generalization of (6) to the case of a medium with 
variable refractive index). So, for nonlinear optics, the numerical algorithm is slightly 
more intrincate. 
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It does not seem that another formalism was ever proposed to study the propaga- 
tion of a polarized beam at the Fresnel approximation although the polarization 
variations could, for instance, intervene in some suggested communication systems as 
“the polarization pulse code modulation system” or “the dual polarization system” 
with a direct effect on noise and crosstalk. 

APPENDIX 1 

First we prove the following relation (L = CJ~ - 8, - a,8,) 

(L + %Ko)2 = A, + Ko2; AL=&+& 2 
Indeed, one has 

and using (2’) 

(L + %Ko)2 = L2 + vu, + 4) Ko + KJ2 

L2 = (0~8~ - ~,a,)~ = aI2 + a22 - (ulcrz + u2ul) ala2 = aI2 + a22 = A, 

and 
La, + 4 = (wJ3 + w2) a, - (WJ, + up& a, = 0 

(A-1) 

which proves (A. 1). 
Assuming now that Y(r) is as smooth as is necessary to ensure the validity of all our 

expansions, one deduces from (4) and (A. 1) 

Y-+1 + !I=--1 = 2 f (-l)P g& (L + a,K,)2” y/” 
p=0 

= 2 ‘f. (-1)” & (A, + &Yp yn 

and from Ref. [3] (x = K,h) 

Yn+l + Y+1 = 2 f’ alALlY”; h2z dl-1 sin x at = - (- l)Z U+l 
LO 2(1!)dx2’1-1’X - = 2"lr j@-l(X)' 

. 0 
I = 1, 2 ,..., (A.2) 

using the spherical Bessel functions of the first kindjj(x). In the same way, one has 

yln+l - yn-1 = -2i f (-l)P h2"+' 
VP + I)! 

(L + u3Ko)2p+1 Yn 
a=0 

= -2i f (-l)P (2:7;), (A, + Ko21p @” 
p=0 

581/32/I-5 
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with 

@” = (L + u3K,,) py” 

and rearranging the terms with respect to increasing powers of d,W 

yl?~+l _ yn-1 = -2i F h22+1 f 
1=0 

= -2i i 01~ A,‘@” 
LO 

with 

LEMMA 1. For every nonnegative integer I, one has 

h2Z+l dz sin x 
az=T&Ziy- x = K,h. 

In fact, with p - I = j, one can write (A.3’) 

az = !!p-1)” f (-l)j (.i + l)(j + 2) *** (j + 0 x2j 
j=O (2j+21+ l)! 

= $2 (-‘)L& $ (-l)j (2i _“;;; 1), 
3=0 

h-21+1 dZ 
=-- 

( 

12 (_l)i+E x21-+1 
I! dx2” x j=. (2E$-?jf I>! 

h2Z+l & (1 - - 
= I! dx2’ 1 x ( 

sin x - i (- 1)” 
K=l 

h2z+1 dz sin x 
=I!-&siy-* 

64.3) 

(A.37 

64.4) 

This completes the proof for the first part of the lemma. The second part is then easy 
from the definition of the Bessel functions. 
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COROLLARY. The comparison between (A.2) and (A.4) gives 

a 
01~ = -2h -- a, ; 

au2 
1 == 0, 1 ) 2,. . . . (A-4) 

This relation makes easy the computations of the q from the a, . 

In summation one has 

!Pn-kl = 2 [a, - iz,(L + u3K0)] Ol,Yn 
2=0 

(A.3 

with a, and 01~ given, respectively, by (A.2) and (A.4). In optics and for sufficiently 
smooth fields, one has 

that is, I a,KoYyn 1 > I LYn / ; so, Eq. (A.5) reduces to 

Yn+l = z. (a, - icx,a,K,) d,‘Ya (A.5’) 

which is a system of two scalar equations. 
We can now discuss the convergence of (A.5’). As in [3], one introduces the dimen- 

sionless quantities [, 7, b. 

so that 
x = hp 5, Y = hp 71, b = hlKoh,2, 

In [3], we proved, the following result: 

a, = O(hz/Ko’), a&l,’ = O(b2) 64.6) 

so, from (A.6) and (A.6’), one has 

ctz = O(hl/K;+‘), o~~cT~K~.CJ~~ = O(b7). (A.67 

Then, it follows from (A.6) and (A.6’) that if JLzYn is bounded for every 1 the series 
(A.5’) converges for b < 1. The paraxial approximation (6) corresponds to the first 
two terms of (A.5’), the next higher approximation is 
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APPENDIX 2 

We shall prove here that for the problem defined by Eqs. (I), (la), and (1 b), there 
exists a constant of motion. 

Let Q be a closed domain in a transverse plane and r be its boundary, Y+(r) being 
the Hermitian conjugate spinor, the Gauss-Ostrogradski theorem gives 

where dl is the length element on r and na the normal r. Now, if r tends to infinity in 
both directions, the right-hand side of the previous relation is zero from (lb), so that 
on the transverse plane z = const., one has 

i 
@(Yf,.p,Y(,)) dx dy = 0. 

kconst 
(A.7) 

In (A.7), a%, = @o, -+ a202 , then it follows from (1) and from the adjoint equation 

that 
Y+(r)(ojaj - i&(1 + qb(r)j) = 0 (assuming p(r) real) 

@(Y+(r) u&Y(r)) = -Z”(Y+(r) u3Y(r)). 

Then, Eq. (A.7) gives 

s Y&)u~Y(~) dx dy = const., (A-8) 
z=const 

that is, provided that P(T) is a real function, polarization is conserved during propaga- 
tion. 
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APPENDIX 3 

TABLE I 

Solution of the Spinor Helmholtz Equation (D = 100 rn)B 

0 0.04919 

3 0.04663 

6 0.03972 

9 0.03034 

12 0.02073 

15 0.0 1260 

0.04663 0.03972 0.03034 

0.04421 0.03764 0.02875 

0.03764 0.03203 0.02443 

0.02875 0.02443 0.01859 

0.01963 0.01665 0.01263 

0.01192 0.01008 0.00760 

Im 4 
__------ 

-0.5373 -0.04696 -0.3751 

-0.5137 -0.4489 -0.3586 

-0.4489 -0.3923 -0.3134 

-0.3586 -0.3134 -0.2503 

-0.2618 -0.2288 -0.1827 

-0.1747 -0.1527 -0.1219 
..-.. --~~ 

+* 

0.02073 0.01260 

0.01963 0.01192 

0.01665 0.01008 

0.01263 0.0760 

0.008526 0.005089 

0.005089 0.002996 

0 -0.5620 

3 -0.5373 

6 -0.4696 

9 -0.3751 

12 -0.2738 

15 -0.1827 

-0.2738 -0.1827 

-0.2618 -0.1747 

-0.2288 --0.1527 

-0.1827 -0.1219 

-0.1334 -0.08903 

- 0.08903 -0.0594 I 

0 0.31826 0.29087 0.22210 0.14162 0.07540 0.03754 

3 0.29087 0.26584 0.20293 0.12942 0.06892 0.03066 

6 0.22210 0.20293 0.15493 0.09882 0.05263 0.02342 

9 0.14162 0.12942 0.09882 0.06300 0.03354 0.01492 

12 0.07540 0.06892 0.05263 0.03354 0.01787 0.00795 

15 0.03354 0.03066 0.02342 0.01492 0.00795 0.00354 

x 
(cm) 

Y 

(cm) 0 3 6 9 12 15 

n j- $# dxdy = 0.99999 x IO-*. 
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TABLE II 

Solution of the Spinor Helmholtz Equation (D = 2000 m)a 

x 
(cm) 

Y 
(cm) 0 3 6 9 12 15 

0 

3 

6 

9 

12 

15 

-0.08910 -0.7867 -0.05131 -0.01686 0.01370 

-0.07867 -0.06892 -0.04339 -0.01139 0.01674 

-0.05131 -0.04339 -0.02280 0.002638 0.0243 1 

-0.01686 -0.01139 0.002638 0.01942 0.03266 

0.01370 0.01674 0.02431 0.03266 0.03788 

0.03289 0.03402 0.03655 0.03847 0.03783 

Im4 

0.03289 

0.03402 

0.03655 

0.03847 

0.03783 

0.03386 

0 0.5304 0.5102 0.4536 0.3717 0.2794 0.1912 

3 0.5102 0.4907 0.4360 0.3570 0.2680 0.1831 

6 0.4536 0.4360 0.3869 0.3159 0.2632 0.1606 

9 0.3717 0.3570 0.3159 0.2568 0.1908 0.1287 

12 0.2794 0.2680 0.2362 0.1908 0.1405 0.09361 

15 0.1912 0.1831 0.1606 0.1287 0.09361 0.06133 

0 0.28926 0.26649 0.20839 0.13845 0.07825 0.03764 

3 0.26649 0.24554 0.19198 0.12758 0.07210 0.03468 

6 0.20839 0.19198 0.15024 0.09980 0.05638 0.02713 

9 0.13845 0.12758 0.09980 0.06632 0.03747 0.01804 

12 0.07825 0.07210 0.05638 0.03747 0.02118 0.01019 

15 0.03764 0.03468 0.02713 0.01804 0.01019 0.00491 

“J&dxdy = 0.10013 x 10-l. 
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TABLE III 

Solution of the Spinor Helmholtz Equation (D = 5000 m) 

x 
(cm) 

Y 
(cm) 0 3 6 9 12 15 

0 0.1976 0.2009 0.2086 

3 0.2009 0.2039 0.2103 

6 0.2086 0.2103 0.2137 

9 0.2141 0.2143 0.2133 

12 0.2101 0.2087 0.2035 

15 0.1919 0.1892 0.1808 

0 0.3892 0.3744 0.3320 

3 0.3744 0.3599 0.3184 

6 0.3320 0.3184 0.2798 

9 0.2677 0.2558 0.2219 

12 0.1912 0.1814 0.1538 

15 0.1141 0.1068 0.08636 

0.2141 0.2101 0.1919 

0.2143 0.2087 0.1892 

0.2133 0.2035 0.1808 

0.2072 0.1919 0.1655 

0.1919 0.1718 0.1428 

0.1655 0.1428 0.1138 

Im* 
-- 

0.2677 0.1912 0.1141 

0.2558 0.1814 0.1068 

0.2219 0.1538 0.08636 

0.1717 0.1135 0.05713 

0.1135 0.06784 0.02520 

0.05713 0.02520 -0.003030 

w 

0 0.19052 0.18054 0.15374 0.11750 0.08070 0.04984 

3 0.18054 0.12953 0.14560 0.11136 0.07646 0.04720 

6 0.15374 0.14560 0.12396 0.09474 0.06507 0.04015 

9 0.11750 0.11136 0.09474 0.07241 0.04971 0.03066 

12 0.08070 0.07646 0.06507 0.04971 0.03412 0.02103 

15 0.04984 0.04720 0.04015 0.03066 0.02103 0.01296 

= J & dxdy = 0.10034 x 10-l. 
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